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ABSTRACT 30 

Sugar content is an important trait of fleshy fruit, and elevating sucrose levels is a major 31 

goal in horticultural crop breeding. Here, we examined the sugar content in two 32 

varieties of the Ussurian pear (Pyrus ussuriensis), Nanguo (NG) and its bud sport 33 

(BNG), and we found that sucrose content was higher in BNG fruit than in NG fruit. 34 

We compared the transcriptomes of the two varieties using RNA-seq and identified a 35 

SWEET (Sugars Will Eventually be Exported Transporter) gene, PuSWEET15, 36 

expressed at higher levels in BNG fruit. Heterologous expression of PuSWEET15 in a 37 

SUSY7/ura yeast (Saccharomyces cerevisiae) strain showed that PuSWEET15 is an 38 

active sucrose transporter. Overexpression of PuSWEET15 in NG pear fruit increased 39 

sucrose content, while silencing of PuSWEET15 in BNG fruit decreased sucrose 40 

content. The WRKY transcription factor PuWRKY31 was also expressed more highly 41 

in BNG fruit than in NG fruit, and we found that PuWRKY31 bound to the 42 

PuSWEET15 promoter and induced its transcription. The histone acetylation level of 43 

the PuWRKY31 promoter was higher in BNG fruit, suggesting a mechanism by which 44 

sucrose levels can be elevated.  45 

  46 
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INTRODUCTION 47 

In plants, the three major soluble sugars are sucrose, glucose and fructose. Of these, 48 

sucrose is the main carbohydrate transported from the photosynthetic source tissues to 49 

heterotrophic sink tissues, and so is central to the resource allocation system (Rennie 50 

and Turgeon, 2009; Eom et al., 2012; Braun et al., 2014). Sucrose represents a metabolic 51 

resource for carbon skeleton construction and energy, allowing growth and 52 

development, and is also an important contributor to the sweetness and flavor of many 53 

fleshy fruits (Braun et al., 2014). Sweetness is one of the main factors of fruit quality 54 

and it has been recognized as an important driver of consumer preference (Jaeger et al., 55 

1998). Thus, an understanding of the mechanisms involved in sucrose transport and the 56 

enhancement of sugar accumulation in fruit is of both fundamental and applied 57 

importance. 58 

Sucrose accumulation in fruits depends on its transportation and metabolism. The 59 

enzymes involved in the metabolism of sucrose are sucrose phosphate synthase (SPS), 60 

sucrose synthase (SS) and invertase (INV) (Stitt et al., 1988; Moriguchi et al., 1992; 61 

Sturm et al., 1999). Sucrose movement between cells can be passive, through 62 

plasmodesmata along a concentration gradient, or active involving transporters, such as 63 

membrane-localized sucrose transporters (SUTs) that translocate sucrose from 64 

mesophyll cells into the phloem in leaves (Riesmeier et al., 1992; Lemoine, 2000). It 65 

has also been shown that intracellular sucrose is transported from mesophyll cells to 66 

the apoplast by the SWEET (Sugars Will Eventually be Exported Transporters) proteins 67 

(Chen et al., 2012). The role of SWEET genes in sucrose transport was first identified 68 

in Arabidopsis (Arabidopsis thaliana), in which a double mutation of AtSWEET11 and 69 

AtSWEET12 caused severe growth retardation and reduced sucrose content in the 70 

vascular bundles but increased sucrose levels in the leaves (Chen et al., 2012). These 71 

results demonstrated that the SWEET genes play important roles in sucrose phloem 72 

loading, and led to subsequent identification and characterization of SWEET family 73 

members in other plant species, including rice (Oryza sativa), soybean (Glycine max), 74 

grape (Vitis vinifera), apple (Malus domestica), sorghum (Sorghum bicolor) and pear 75 

(Pyrus bretschneideri) (Yuan and Wang, 2013; Chong et al., 2014; Wei et al., 2014; 76 
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Patil et al., 2015; Mizuno et al., 2016; Li et al., 2017a). SWEET transporters are 77 

predicted to have seven transmembrane segments (TMSs) with two distinct repeated 78 

units of three TMSs and a connecting fourth TMS (Xuan et al., 2013). There are 21 79 

SWEET genes in the rice genome, among which OsSWEET11 (also named Os8N3/Xa13) 80 

and OsSWEET14 (Os11N3) encode proteins that are localized to the plasma membrane 81 

and so likely affect sugar levels in the apoplast. Knocking out OsSWEET11 causes 82 

smaller seeds, reduced pollen viability, defective stamens and decreased sucrose 83 

content (Chu et al., 2006; Yang et al., 2006; Ma et al., 2017; Gao et al., 2018). In 84 

Arabidopsis, AtSWEET15  localizes to the plasma membrane, and its transcript levels 85 

are significantly higher during water stress, suggesting a role in sucrose apoplastic 86 

unloading (Durand et al., 2016). AtSWEET17 is a fructose transporter (Guo et al., 2014). 87 

In soybean, GmSWEET15 mediates sucrose export from endosperm to early embryo, 88 

and in the gmsweet15 mutant, the sucrose and glucose contents are significantly 89 

decreased in all seed parts compared with the wild type (Wang et al., 2019). Moreover, 90 

a Medicago truncatula MtSWEET1b transporter supplies glucose for Arbuscular 91 

mycorrhizal (An et al., 2019a). These findings suggest a broad role for SWEET genes 92 

in sugar transportation. 93 

Pear is a very important horticultural crop in the world. With the published pear 94 

genome, genes related to many quality traits such as stone cells, sugar, acid, volatiles, 95 

color and ripening have been identified (Wu et al., 2013; Dong et al., 2019; Chagne et 96 

al., 2014). This provides plenty of resources to study the formation of quality traits in 97 

pear. However, information regarding the sugar accumulation in pear fruit is still 98 

lacking. In this study, we characterized the basis of sweetness in the Nanguo (NG) 99 

clonal variety of Ussurian pear (Pyrus ussuriensis). NG is highly valued by growers 100 

and consumers because of its cold resistance, taste and aroma (Huang et al., 2014). In 101 

perennial fruits, a new variety that derives from shoot cells of the parent, presumably 102 

through genetic or epigenetic alterations, is called a bud sport variety (Furiya et al., 103 

2009). A bud sport variety of NG (herein referred to as BNG) was identified on a NG 104 

tree in 1980s on a farm in the Anshan region in Liaoning province. The skin color of 105 

BNG fruit is similar to NG fruit in the early stage (before 40 days after full bloom), and 106 
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thereafter turns to brown (Fig. 1A), and this phenotype is stable after being propagated 107 

clonally (Supplemental Fig. 1A-B). More interestingly, BNG is sweeter tasting than 108 

NG, but the underlying mechanism is unknown. We compared the sugar content of NG 109 

and BNG fruits and found that the sucrose content was higher in BNG fruit. A sucrose 110 

transporter PuSWEET15 was more highly expressed in BNG fruit than in NG fruit. We 111 

also determined that a WRKY transcription factor PuWRKY31, which was also 112 

expressed at higher levels in BNG fruit, bound to the PuSWEET15 promoter and 113 

upregulated its expression.  114 

Plant WRKY proteins participate in developmental processes and respond to 115 

various biotic and abiotic stresses (Zhou et al., 2008; Ren et al., 2010; Sun et al., 2019). 116 

The expression of WRKY genes is also strongly induced during senescence; for example, 117 

overexpression of AtWRKY45 significantly accelerates the expression of 118 

SENESCENCE ASSOCIATED GENEs (SAGs) (Chen et al., 2017). AtWRKY57 119 

interacts with repressors of the jasmonate (JA) and auxin signaling pathways, affecting 120 

JA-induced leaf senescence in Arabidopsis (Jiang et al., 2014). In addition, AtWRKY75 121 

interacts with DELLA proteins and may function as a component of the gibberellins 122 

(GA)-mediated signaling pathway to positively regulate Arabidopsis flowering (Zhang 123 

et al., 2018). WRKY proteins are also reported to participate in regulation of quality 124 

traits in proanthocyanidin and anthocyanin biosynthesis (Lloyd et al., 2017). For 125 

example, a WRKY transcription factor (TRANSPARENT TESTA GLABRA2, TTG2) 126 

interacts with the MBW (MYB-bHLH-WD40) complex to regulate proanthocyanidin 127 

biosynthesis in Arabidopsis seed (Gonzalez et al., 2016). Overexpressing MdWRKY11 128 

significantly promotes anthocyanin accumulation and increases the expression of MYB 129 

transcription factors and structural genes of anthocyanin in apple (Liu et al., 2019). 130 

MdWRKY40 interacts with MdMYB1 physically, thus enhancing the binding of 131 

MdMYB1 to its target genes to induce wounding-induced anthocyanin biosynthesis in 132 

apple fruit (An et al., 2019b). WRKY transcription factors respond to sugar treatment 133 

by activating the expression of sugar-responsive genes in Arabidopsis (Chen et al., 134 

2019). However, to date, involvement of WRKYs in sugar transport has not been 135 

reported. We show here that increased histone acetylation in the PuWRKY31 promoter 136 

 www.plantphysiol.orgon April 1, 2020 - Published by Downloaded from 
Copyright © 2020 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

6 
 

is associated with its higher expression in BNG fruit.  137 

 138 

RESULTS 139 

Sucrose Levels are Significantly Higher in BNG Fruit than in NG Fruit 140 

To investigate the basis of the sweeter taste of BNG fruit, we first compared the content 141 

of total soluble solids in BNG and NG fruits. Based on measurements from two years 142 

(2014 and 2018), we found that the total soluble solid content was higher in BNG fruit 143 

than in NG fruit (Supplemental Fig. S2A and S2B). To determine which sugars were 144 

present at higher levels in BNG, sucrose, glucose, fructose and sorbitol levels in fruit 145 

at different developmental stages were measured using high performance liquid 146 

chromatography (HPLC). We observed a significantly higher sucrose content in BNG 147 

fruit than in NG fruit from 105 to 134 DAFB (days after full bloom) (Fig. 1B), while 148 

no significant differences were observed for glucose and fructose (Fig. 1C and 1D). 149 

These results were consistent with data from a 2018 study (Supplemental Fig. S2C-E). 150 

Sorbitol content was significantly higher in BNG than in NG fruit only at the time of 151 

commercial harvest (134 DAFB) (Fig. 1E), while no difference was found in the 2018 152 

samples (Supplemental Fig. S2F). These findings suggested that the higher BNG sugar 153 

content and sweeter taste was due to a higher accumulation of sucrose.  154 

 155 

The Sugar Transporter, PuSWEET15, is Highly Expressed in BNG Fruit 156 

To identify genes that might contribute to the higher sucrose accumulation in BNG fruit, 157 

we compared the transcriptomes of NG and BNG fruits harvested at 134 DAFB 158 

(commercial harvest) using RNA-seq. Genes known to be involved in sucrose transport 159 

and metabolism, such as SUT, SPS, SS and INV, did not show differential expression 160 

between NG and BNG fruits. However, the RNA-seq analysis revealed that a SWEET 161 

gene was expressed ~11 fold higher in BNG fruit than in NG fruit (Supplemental 162 

Dataset S1; Supplemental Fig. S3). We cloned this gene from both varieties and in both 163 

cases the coding region of PuSWEET was completely identical with 918 bp. The 164 

predicted amino acid sequence was most similar to the AtSWEET15 protein, with 50% 165 

 www.plantphysiol.orgon April 1, 2020 - Published by Downloaded from 
Copyright © 2020 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

7 
 

identity (Supplemental Fig. S4), and so it was named PuSWEET15. 166 

The expression profile of PuSWEET15 was investigated in NG and BNG fruits 167 

during development, and we found that it was expressed at significantly higher levels 168 

in BNG fruit from 105 to 134 DAFB (Fig. 2A; Supplemental Fig. S5), consistent with 169 

the change in sucrose content (Fig. 1B). To determine the intracellular localization of 170 

PuSWEET15, its coding sequence (CDS) was fused downstream of a green fluorescent 171 

protein (GFP) tag driven by the CaMV35S promoter (35S:GFP-PuSWEET15) in the 172 

pRI101 vector. The recombinant plasmid (35S:GFP-PuSWEET15) or a plasmid 173 

encoding GFP alone, were transiently expressed in protoplasts of maize (Zea mays) 174 

leaves. GFP alone was detected in both the membrane and nucleus, while GFP-175 

PuSWEET15 only localized to the plasma membrane (Fig. 2B). 176 

 177 

Functional Characterization of PuSWEET15 by Heterologous Expression in Yeast 178 

Cells 179 

To investigate whether PuSWEET15 encodes a functional sucrose transporter, we 180 

ligated its CDS into the pDR196 vector and expressed it in a yeast (Saccharomyces 181 

cerevisiae) mutant strain SUSY7/ura which is deficient in the wild-type sucrose uptake 182 

mechanism in yeast (invertase-mediated hydrolysis of sucrose with uptake of the 183 

resulting monosaccharides) and has a plant-derived sucrose synthase activity to 184 

metabolize any sucrose taken up by foreign sucrose transporters. The mutant strain 185 

carrying an empty pDR196 vector was used as a control. All transformants were grown 186 

on SD (synthetic deficient) solid medium containing glucose or sucrose as the sole 187 

carbon source without uracil. The yeast cells containing PuSWEET15 survived well on 188 

SD/-uracil solid medium containing sucrose as the sole carbon source compared with 189 

control (Fig. 3A), suggesting that PuSWEET15 is a typical sucrose transporter. 190 

 191 

PuSWEET15 Is Essential for Sucrose Accumulation in Pear Fruit 192 

To identify the function of PuSWEET15 in pear fruit, we overexpressed PuSWEET15 193 

under the control of the CaMV35S promoter in NG fruit using Agrobacterium 194 

tumefaciens-mediated infiltration. The empty pRI101 vector was used as a control. 195 
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Higher expression of PuSWEET15 was detected in PuSWEET15-overexpressing fruit 196 

(PuSWEET15-OE) (Fig. 3B), and the sucrose content was significantly higher than in 197 

control fruit, while no significant difference was observed for the other three sugars 198 

investigated (Fig. 3C). Then we silenced PuSWEET15 expression in BNG pear fruit 199 

using A. tumefaciens-mediated infiltration. Lower expression of PuSWEET15 was 200 

detected in PuSWEET15-silenced fruit (PuSWEET15-AN) (Fig. 3D), and the sucrose 201 

content was significantly lower than in control fruit, while no significant difference was 202 

observed for the other three sugars investigated (Fig. 3E), suggesting that PuSWEET15 203 

is essential for sucrose accumulation in pear fruit. 204 

To provide further evidence for PuSWEET15 functioning as a sucrose transporter, 205 

we examined the putative role of PuSWEET15 in sucrose transport using A. 206 

tumefaciens-mediated infiltration of Nicotiana benthamiana leaves. Following 207 

treatment with 1% sucrose for 6 d, PuSWEET15 was highly expressed (Fig. 3F), and 208 

significantly higher sucrose levels were detected in PuSWEET15-OE leaves than in 209 

those of wild type (Fig. 3F). These results were all consistent with PuSWEET15 210 

contributing to sucrose transport. 211 

 212 

The Transcription Factor PuWRKY31 is Highly Expressed in BNG Fruit 213 

To elucidate the PuSWEET15 expression profiles in NG and BNG fruits, we compared 214 

the PuSWEET15 CDS from each; however, no difference was found. Moreover, no 215 

differences were observed in the PuSWEET15 promoter regions (1,177 bp from the 216 

translation initiation site) from NG and BNG, and the methylation levels (+1 to -1107) 217 

and the histone acetylation levels (-60 to -409; -895 to -1167) of the promoters were 218 

also almost identical (Supplemental Fig. S6).  219 

We then analyzed the cis-elements of the PuSWEET15 promoter (1,177 bp) and 220 

identified binding sites of transcription factors such as WRKY, DOF (DNA-binding one 221 

finger) and MYB. In combination with the RNA-seq results, a WRKY transcription 222 

factor, PuWRKY31, was more highly expressed in BNG fruit than in NG fruit 223 

(Supplemental Fig. S7). This was confirmed by reverse transcription quantitative PCR 224 

(RT-qPCR) (Fig. 4A; Supplemental Fig. S8). We then focused on the characterization 225 
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of PuWRKY31. 226 

To investigate the function of PuWRKY31, we cloned the corresponding CDS into 227 

the pRI101 vector to allow its expression under the control of the CaMV35S promoter 228 

and as a fusion with a MYC peptide tag. This construct was overexpressed in NG fruit 229 

(PuWRKY31-OE), and the higher expression of PuWRKY31 in PuWRKY31-OE fruit 230 

was verified by RT-qPCR (Fig. 4B). We detected that the sucrose content in 231 

PuWRKY31-OE fruit was significantly higher than control fruit (Fig. 4C). Notably, the 232 

expression level of PuSWEET15 was also higher in PuWRKY31-OE fruit (Fig. 4B), 233 

suggesting that PuWRKY31 might play a role in sucrose transport by regulating the 234 

expression of PuSWEET15. 235 

 236 

PuWRKY31 Binds to the Promoter of PuSWEET15 and Upregulates its 237 

Transcription  238 

To investigate whether PuSWEET15 is a direct target of PuWRKY31, we performed an 239 

electrophoretic mobility shift assay (EMSA) with three biotin-labeled fragments of the 240 

PuSWEET15 promoter containing four W-box motifs (TGAC, binding site of WRKY) 241 

as the labeled probe. His-tagged PuWRKY31 (PuWRKY31-His) was purified and used 242 

for DNA-binding assays. As shown in Fig. 5A, PuWRKY31 bound to the PuSWEET15 243 

promoter (Fig. 5A, lanes 2, 5 and 8). When an unlabeled probe was added as a 244 

competitor, the binding of PuWRKY31 to the PuSWEET15 promoter was reduced (Fig. 245 

5A, lanes 3, 6 and 9), confirming that PuWRKY31 bound to the PuSWEET15 promoter 246 

in vitro. 247 

Next, we used chromatin immunoprecipitation (ChIP) PCR to investigate the in 248 

vivo binding of PuWRKY31 to the PuSWEET15 promoter. Cross-linked chromatin 249 

samples were extracted from the PuWRKY31-OE fruit (Fig. 4B) and precipitated with 250 

an anti-MYC antibody. Eluted DNA was used to amplify the sequences neighboring the 251 

W-box by qPCR. Fruits overexpressing the GFP sequence were used as negative 252 

controls. Fig. 5B shows that the presence of PuWRKY31 substantially enhanced the 253 

PCR-based detection of the PuSWEET15 promoter, indicating in vivo binding of 254 

PuWRKY31 to the PuSWEET15 promoter. 255 
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We then investigated the regulation by PuWRKY31 of the PuSWEET15 promoter 256 

using a β-glucuronidase (GUS) activation assay in N. benthamiana leaves, following 257 

co-infiltration with Pro35S:PuWRKY31 and ProPuSWEET15:GUS. Pro35S:GUS was 258 

used as a control. When Pro35S:PuWRKY31 was co-infiltrated with 259 

ProPuSWEET15:GUS, PuSWEET15 promoter activity increased significantly 260 

compared with the control (Fig. 5C), suggesting that PuWRKY31 is a transcriptional 261 

activator of PuSWEET15. Collectively, these results suggested that PuWRKY31 binds 262 

to the PuSWEET15 promoter and promotes its transcription. 263 

 264 

The Expression Profile of PuWRKY31 Correlates with Histone Acetylation Levels  265 

To investigate the PuWRKY31 expression profiles in NG and BNG fruits, we compared 266 

its CDS, promoter sequences (1,550 bp from the translation initiation site) and 267 

methylation levels of the promoter regions (Supplemental Fig. S9). However, no 268 

significant differences were observed. 269 

We hypothesized that the PuWRKY31 expression pattern might correlate with a 270 

change in histone modification, and so examined the PuWRKY31 histone acetylation 271 

levels in NG and BNG fruits by ChIP-PCR, using anti-acetyl-histone H3 (H3ac) and 272 

H4 (H4ac) antibodies. As a control, the change in histone acetylation (H3ac and H4ac) 273 

of the PuActin housekeeping gene was also analyzed. No significant changes in H3ac 274 

and H4ac were found in NG or BNG for the PuActin gene (Fig. 6A), and it was used to 275 

normalize the subsequent ChIP-PCR results. Three regions (S1-S3) of pear genomic 276 

DNA including the PuWRKY31 promoter and CDS were examined, which were 277 

predicted to be easily acetylated (Zhou et al., 2013; Han et al., 2016). The acetylation 278 

levels of regions S1 and S3 detected by histone H3ac, and region S1 detected by H4ac 279 

were significantly higher in BNG than in NG fruit (Fig. 6B). 280 

 To investigate what causes the higher acetylation level of PuWRKY31 in BNG fruit, 281 

we identified a histone acetyltransferase gene HLS1 (HOOKLESS 1) (Liao et al., 2016), 282 

PuHLS1, from the RNA-seq results (Supplemental Dataset S1). PuHLS1 expression 283 

was higher in BNG fruit than in NG fruit (Fig. 6C; Supplemental Fig. S10). A previous 284 

report has shown that HLS1 binds to the TSS (transcription start site) and the 3’-CDS 285 
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of the AtWRKY33 in Arabidopsis (Liao et al., 2016). We investigated whether PuHLS1 286 

directly interacts with the CDS of PuWRKY31 using EMSA analysis with two biotin-287 

labeled fragments of the CDS of PuWRKY31 (probe 1: 1 to 50; probe 2: 50 to 100) as 288 

the hot probe. GST-tagged PuHLS1 (PuHLS1-GST) was purified and used for DNA-289 

binding assays. As shown in Fig. 6D, the GST alone did not bind to the PuWRKY31 290 

CDS (Fig. 6D, lanes 4 and 8), but PuHLS1 did (Fig. 6D, lanes 1 and 5). When an 291 

unlabeled probe was added as a competitor, the binding of PuHLS1 to the PuWRKY31 292 

CDS was reduced (Fig. 6D, lanes 2 and 6), confirming that PuHLS1 bound to the 293 

PuWRKY31 CDS in vitro. To elucidate the PuHLS1 expression profiles in NG and BNG 294 

fruits, we compared its CDS, promoter sequences (2,032 bp from the translation 295 

initiation site) and methylation levels of the promoter regions, however, they were 296 

almost identical in NG and BNG (Supplemental Fig. S11).  297 

 298 

DISCUSSION 299 

Sucrose is the main photosynthesis product transported in most plants (Ayre, 2011). 300 

By comparing the contents of different sugars in NG and BNG fruits, we found that 301 

only the sucrose content was significantly higher in BNG fruit than in NG fruit (Fig. 1). 302 

Although sorbitol is important for transport of photosynthesis products in tree fruit 303 

crops of the Rosaceae family (Priestley, 1983; Zhang et al., 2014), our data showed that 304 

the sorbitol content was higher in BNG fruit than in NG fruit only in samples collected 305 

on 134 DAFB in 2014 (Fig. 1E), and no difference was observed in samples collected 306 

in 2018 (Supplemental Fig. S2F). The difference of sorbitol content between years 307 

might be caused by climatic conditions such as rainfall, light or temperature. However, 308 

importantly, the difference in sucrose content between BNG and NG fruits did not vary 309 

between years. These results suggested that BNG is a bud sport variety of NG pear with 310 

higher sucrose accumulation.  311 

SWEET proteins have been widely identified as sugar transporters in plants, 312 

especially for sucrose transport (Chen et al., 2012). Here, PuSWEET15 was observed 313 

to transport sucrose in pear fruit tissue and N. benthamiana leaves when expressed 314 

heterologously (Fig. 3). This is consistent with the function of AtSWEET11, 315 
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AtSWEET12 and AtSWEET15 from Arabidopsis, in which a double mutation of 316 

AtSWEET11 and AtSWEET12 causes defects in phloem sucrose loading (Chen et al., 317 

2012). AtSWEET15 was shown to transport sucrose by expressing SWEET15 in 318 

Xenopus laevis oocytes and measuring [14C]-sucrose uptake (Chen et al., 2015).  319 

In plants, the WRKY family is one of the largest transcription factors families 320 

(Zhang and Wang, 2005; Rushton et al., 2010), but functional characterization has 321 

mostly focused on their roles in various biotic and abiotic stresses and developmental 322 

processes (Rushton et al., 2010). For example, WsWRKY1 regulates nitrogen stress 323 

tolerance through modulation of phytosterol and defense pathways in Withania 324 

somnifera, and soybean GmWRKY16 enhances drought and salt tolerance in 325 

Arabidopsis through an ABA-mediated pathway (Pal et al., 2017; Singh et al., 2017; 326 

Ma et al., 2018). Another recent report showed that VaWRKY33 is involved in cold 327 

tolerance in Amur grape (Vitis amurensis) (Sun et al., 2019). A more recent study 328 

reported that AtWRKY18 and AtWRKY53 directly bind to the promoter of sugar 329 

response genes and activate their expression in response to glucose treatment in 330 

Arabidopsis (Chen et al., 2019). In our study, we showed that PuWRKY31 was 331 

expressed at significantly higher levels in BNG fruit than in NG fruit (Fig. 4A). 332 

Moreover, PuWRKY31 positively regulated the expression of PuSWEET15 by binding 333 

to its promoter (Fig. 5). Importantly, overexpression of PuWRKY31 in pear fruit led to 334 

increased sucrose content (Fig. 4C), suggesting the involvement of PuWRKY31 in 335 

sucrose transport in pear fruit.  336 

Bud sport varieties occasionally occur in tree fruit crops and are usually caused by 337 

a small number of presumably genetic or epigenetic alterations (Whitham and 338 

Slobodchikoff, 1981; Furiya et al., 2009). BNG was found by our colleague in the 1980s 339 

on a NG tree. BNG showed phenotypes similar to those of NG in leaf, flower and fruit 340 

shape (Fig. 1A; Supplemental Fig. 1). Unfortunately we do not have the original picture 341 

showing both NG and BNG fruits on different branches of the same tree. However, 342 

BNG maintained stable phenotypes when grafted on a NG tree (Supplemental Fig. 1A) 343 

or when propagated clonally and cultivated in different regions (Supplemental Fig. 1A-344 

B). Moreover, we analyzed the genomic DNA of both NG and BNG by using 17 pairs 345 
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of SSR (simple sequence repeat) primers, but failed to detect any polymorphic bands 346 

between two varieties (Supplemental Fig. 1C). These findings indicated that BNG and 347 

NG share high similarity in genetic background. In addition to sweetness and sucrose 348 

content, BNG differs from NG in other characteristics, such as fruit skin color (Fig. 1A; 349 

Supplemental Fig. 1). It will be quite interesting to explore if the skin color is related 350 

to the high sucrose content in BNG fruit.  351 

We set out to determine why PuWRKY31 was expressed differentially in NG and 352 

BNG fruits. We investigated the CDS and promoter sequence, as well as the promoter 353 

methylation levels of two varieties, but found no differences. So we compared the 354 

PuWRKY31 histone acetylation level, and found that the higher PuWRKY31 expression 355 

level in BNG fruits is associated with a higher level of histone acetylation in its 356 

promoter and CDS region (Fig. 6B). A high histone acetylation level can be regulated 357 

by various coactivators, which recruit histone acetyltransferases (HATs) to enhance the 358 

acetylation of lysine residues, which in turn can neutralize the positive charge of histone 359 

proteins. This causes an unwinding of the chromatin structure and exposure of binding 360 

sites in the promoter, thereby increasing the accessibility for transcription factors 361 

(Shahbazian and Grunstein, 2007). In Arabidopsis, a histone acetyltransferase HLS1 362 

mediates histone acetylation on AtWRKY33 chromatin, and the histone H3 acetylation 363 

level at AtWRKY33 chromatin is significantly lower in the hls1 mutant than that in the 364 

wild type (Liao et al., 2016). Moreover, in Arabidopsis, hls1 mutants accumulate less 365 

total soluble sugar than the wild type (Ohto et al., 2006). In our study, a histone 366 

acetyltransferase PuHLS1 was expressed significantly higher in BNG fruit than in NG 367 

fruit, and PuHLS1 could bind to the CDS of PuWRKY31 (Fig. 6C and 6D). Therefore, 368 

we propose that the higher expression level of PuHLS1 might cause the higher histone 369 

acetylation level of PuWRKY31, resulting in higher sucrose accumulation in BNG fruit. 370 

In conclusion, PuSWEET15 was expressed higher in BNG fruit than in NG fruit and 371 

PuWRKY31 bound to the PuSWEET15 promoter to induce its expression. Moreover, 372 

the high acetylation level of the PuWRKY31 promoter was associated with its high 373 

expression level in BNG fruit (Fig. 7).  374 

 375 
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MATERIALS AND METHODS 376 

Plant Material and Treatments 377 

Fruits of Ussurian pear (Pyrus ussuriensis) cv. Nanguo (NG) and its bud sport variety 378 

(BNG) were sampled from mature trees growing in the experimental farm of the 379 

Liaoning Pomology Institute (Xiongyue, China). Fruits were harvested at 60, 90, 105, 380 

120 and 134 DAFB (commercial harvest day) in 2014, and 60, 90, 120 and 137 DAFB 381 

(commercial harvest day) in 2018, and immediately transported to the laboratory. At 382 

each sampling point, three fruits of each variety were selected for measuring sugar 383 

content. The flesh of those fruits was cut into pieces, frozen in liquid nitrogen and stored 384 

at -80 °C for further use.  385 

Nicotiana benthamiana plants used in this study were grown with potting medium 386 

in a growth chamber (25 °C, 16-h-light, 8-h-dark).  387 

 388 

Measurements of Soluble Solids and Sugar Content 389 

At each sampling point, the fruit flesh was homogenized with a homogenizer, filtered 390 

through a cell strainer (Cat. no. CSS010040, Jet Biofil, https://www.jetbiofil.com), and 391 

the soluble solids content of the filtrate was measured with a sugar meter (PAL-1, 392 

ATAGO, Japan). The soluble sugar content was measured by HPLC (Agilent 393 

Technologies 1260 Series) as described in Jia et al. (2011). Briefly, samples were 394 

ground to a fine powder in liquid nitrogen. Three grams of the powder was mixed with 395 

10 ml of 80% (v/v) ethanol, incubated in a water bath for 30 min at 80 °C, and then 396 

centrifuged at 10,000 g for 5 min in a 50-ml centrifuge tube and the supernatant was 397 

collected. The above step was repeated twice to re-extract the pellets, the supernatants 398 

were combined and the samples were evaporated in boiling water. After drying in a 50-399 

ml centrifuge tube, the samples were dissolved in 1 ml of ultrapure water and passed 400 

through a 0.45 μm membrane and the soluble sugar content of the filtrate was measured. 401 

HPLC (Agilent 1260) was then performed with the following components and 402 

parameters: a 7.8 × 300 mm Carbomix Ca-NP column (Sepax); ultrapure water as the 403 

mobile phase, at a flow rate of 1 ml min–1; a column temperature of 80 °C; a refractive 404 

index detector temperature of 35 °C; and an injection volume of 10 μl. At each sampling 405 
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point, at least nine fruits were randomly selected and divided into three groups as three 406 

biological replicates. The flesh in each group was pooled for measuring soluble solids 407 

and sugar content. 408 

 409 

RNA-seq 410 

Total RNA was extracted from NG and BNG fruits harvested at the commercial harvest 411 

day (134 DAFB in 2014). RNA-seq analysis, including library construction, sequencing 412 

and bioinformatics analysis was performed as in Huang et al. (2014) by Biomarker 413 

(www.biomarker.com.cn). Sequencing was performed on an Illumina HiSeqTM 2000 414 

system. Total RNA was extracted from the three groups of fruit as mentioned above as 415 

three biological replicates for RNA-seq. All the raw data were deposited into NCBI 416 

Sequence Read Archive (SRA) under accession number PRJNA545020. The heat maps 417 

for differentially expressed genes between NG and BNG fruits were constructed using 418 

an online software 419 

(https://console.biocloud.net/static/index.html#/drawtools/intoDrawTools/heatmap/inp420 

ut) according to the log2 (FC) value from the RNA-Seq data. 421 

 422 

Gene Cloning and Expression Analysis 423 

Total RNA extraction was conducted as in Li et al. (2015), and first strand cDNA was 424 

synthesized from 700 ng of total RNA using the M-MLV RTase cDNA Synthesis Kit 425 

(Cat. no. D6130, TaKaRa). The cDNA was then used as template for reverse 426 

transcription quantitative PCR (RT-qPCR) and standard RT-PCR assays, using 427 

sequence information for each gene derived from the RNA-seq data. Standard RT-PCR 428 

was performed according to Li et al. (2015), with 4 μl of each PCR product separated 429 

on a 1% agarose gel and imaged on a GelDoc XR System (Bio-Rad). RT-qPCR was 430 

performed using the SYBR Premix ExTaq II Kit (Cat. no. RR820, TaKaRa) on an 431 

Applied Biosystems 7500 Real-Time PCR System as previously described (Li et al., 432 

2015). The pear Actin gene was used as an internal control and total RNA was extracted 433 

from the three groups of fruit as mentioned above as three biological replicates. All 434 

primers were designed using the Primer3 software (http://frodo.wi.mit.edu/) and are 435 
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listed in Supplemental Dataset S2. 436 

 437 

SSR analysis of NG and BNG pear fruit 438 

Genomic DNA was isolated from the fruit samples harvested in 2014 as described in 439 

Wang et al. (2013). SSR (simple sequence repeat) primers with polymorphism were 440 

selected from previous reports (Yamamoto et al. 2002; Jiang et al. 2009). Standard PCR 441 

was conducted and the PCR products were analyzed on 6% denaturing polyacrylamide 442 

gel with silver staining according to Bao et al. (2007). 443 

 444 

Subcellular Localization of PuSWEET15  445 

The protoplasts of maize (Zea mays) leaves were prepared as described previously (Yoo 446 

et al., 2007). The PuSWEET15 coding region was cloned into the BamHI and SacI sites 447 

downstream of GFP in the pRI101 vector (TaKaRa) to form the 448 

Pro35S:GFP:PuSWEET15 construct. Pro35S:GFP was used as a control. The 449 

constructs were transformed into the protoplasts of maize leaves according to a previous 450 

report (Yoo et al., 2007). The fluorescence was observed using a fluorescence 451 

microscope 16 h after transformation under a confocal microscope (TCS SP8, Leica, 452 

Germany). FM4-64 (N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino) phenyl) 453 

hexatrienyl) pyridinium dibromide, Cat. no. T3166, Thermo Fisher Scientific) was used 454 

as a cell membrane dye. All transient expression assays were repeated at least three 455 

times. The primers used are listed in Supplemental Dataset S2.  456 

 457 

Heterologous Expression of PuSWEET15 in Yeast Cells 458 

For the complementation assay in yeast (Saccharomyces cerevisiae) cells, the CDS of 459 

PuSWEET15 was cloned into the yeast expression vector pDR196 (Cat. no. VT8007, 460 

YouBio, http://www.youbio.cn/) using Sma1 and Sal1 restriction enzyme sites to form 461 

the pDR196-PuSWEET15 construct. Empty pDR196 vector was used as a negative 462 

control. The constructs were transformed into yeast mutant strain SUSY7/ura (Li et al., 463 

2017c; Riesmeier et al., 1992) using the lithium acetate method (Soni et al., 1993). The 464 

transformants were cultured in liquid SD (synthetic deficient) (Cat. no. PM2271, 465 
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Coolaber, http://www.coolaber.com/) medium containing 2 % (w/v) glucose (Sigma) as 466 

the sole carbon source without uracil by shaking at 180 rpm under 30 °C to OD600 0.5. 467 

The culture was then diluted by different fold (×10, ×100, ×200, ×1000), and 6 μl of 468 

dilution was dropped on SD/-uracil solid medium containing 2% (w/v) glucose or 2% 469 

(w/v) sucrose (Sigma) as sole carbon source at pH 4.0. Yeast cells on medium with 470 

glucose were grown at 30 °C for 2 d, and those on medium with sucrose were grown at 471 

30 °C for 4 d. 472 

 473 

EMSA 474 

The PuWRKY31 CDS was cloned and inserted into the pEASY-E1 vector (Transgen 475 

Biotech, http://www.transgen.com.cn/) resulting in its fusion to a His-tag, and the CDS 476 

of PuHLS1 was cloned and inserted into the downstream of GST in the pGEX4T-1 (GE 477 

Healthcare, http://www3.gehealthcare.com/) vector, before being transformed into 478 

Escherichia coli BL21 (DE3) (Transgen Biotech) competent cells. The purification of 479 

the His-tagged and GST-tagged fusion proteins were performed as previously described 480 

(Li et al., 2016). For EMSA, the 3’ biotin end-labeled double-stranded DNA probes 481 

were prepared by annealing complementary oligonucleotides. The oligonucleotides 482 

were heated at 95 °C for 5 min, then at 72 °C for 20 min, and left to cool to room 483 

temperature before use. The biotin-labeled PuSWEET15 promoter and PuWRKY31 484 

CDS sequences are shown in Fig. 5A and Fig. 6D. EMSA was performed as previously 485 

described (Li et al., 2016) using the LightShift Chemiluminescent EMSA Kit (Cat. no. 486 

20148, Thermo Scientific). 487 

 488 

GUS Analysis 489 

The PuSWEET15 promoter sequence (1,177 bp upstream of the translation start site) 490 

was cloned into the SalI and SmaI sites upstream of the GUS reporter gene in the 491 

pBI101 vector to generate a reporter construct. The PuWRKY31 CDS was introduced 492 

into the pRI101 vector through restriction enzyme sites (SalI and KpnI) to form the 493 

effector construct. The infiltration of the reporter and effector constructs into N. 494 

benthamiana leaves and measurement of GUS activity were performed as previously 495 
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described (Li et al., 2016). The infiltration was repeated independently at least three 496 

times. The primers used are listed in Supplemental Dataset S2. 497 

 498 

Methylation Analysis 499 

Genomic DNA was isolated from the fruit samples harvested in 2014 as described in 500 

Wang et al. (2013). McrBC-PCR was used to analyze the methylation of relative 501 

sequences. One μg DNA isolated from fruit was digested with McrBC (Cat. no. M0272, 502 

New England Biolabs) according to the manufacturer’s instruction. Three biological 503 

replicates were analyzed. For the control, water was added instead of GTP. After 504 

digestion, DNA was used as a template for standard PCR analysis. The thermal cycling 505 

conditions were 3 min at 95 °C; 27 cycles of 30 s at 95 °C, 30 s at 55 °C and 1 min at 506 

72 °C; followed by 72 °C 5 min for a final extension. The PCR product was separated 507 

in 0.5 % agarose gel and photographed with GelDoc XR System (BioRad). Four regions 508 

of the PuSWEET15 promoter or the PuWRKY31 promoter and five regions of the 509 

PuHLS1 promoter were examined (Supplemental Fig. S6, S9 and S11). The amount of 510 

PCR product was used to estimate the degree of methylation of the promoter region. 511 

The PCR bands were quantified by ImageJ software. 512 

 513 

Agrobacterium-mediated infiltration 514 

To overexpress PuSWEET15 in N. benthamiana leaves, its CDS was cloned into the 515 

pRI101 plant transformation vector using BamHI and SacI restriction enzyme sites to 516 

form the Pro35S:PuSWEET15 construct. The recombinant plasmid was transformed 517 

into Agrobacterium tumefaciens strain EHA105 for infiltration of N. benthamiana 518 

leaves as previously described (Li et al., 2017b). Briefly, the suspension for infiltration 519 

was injected into mature leaves of N. benthamiana which were grown on potting 520 

medium when the plants were 5 weeks old. After infiltration, the potting medium was 521 

irrigated with 1% sucrose every 2 d. The plants were collected 6 d after infiltration for 522 

further use.  523 

To overexpress PuSWEET15 or PuWRKY31 in NG pear fruit, the CDS regions 524 

were separately cloned into the SalI and KpnI sites upstream of the MYC tag in the 525 
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pRI101 vector to form Pro35S:PuSWEET15-MYC and Pro35S:PuWRKY31-MYC, 526 

respectively. To silence PuSWEET15 expression in BNG pear fruit, a partial 527 

PuSWEET15 CDS (686-898 bp) was ligated into the pRI101 vector in the reverse 528 

direction to generate the antisense PuSWEET15 construct (PuSWEET15-AN). These 529 

plasmids were transformed into A. tumefaciens strain EHA105, and the preparation of 530 

infiltration buffer and fruit infiltration were performed as previously described (Li et 531 

al., 2016). Briefly, 100 μl of the infiltration buffer was taken with a 1-ml sterile syringe 532 

and injected into on-tree fruit at a depth of 0.3 cm at 120 DAFB. For each fruit, one 533 

side was used for infiltrating target constructs, and the other side for infiltrating empty 534 

pRI101 as control. Three injections were performed on each side of fruit. The infiltrated 535 

fruits were harvest 6 d after infiltration, and the fruit flesh around the infiltrated area 536 

was sampled for further use. One fruit was used as a biological replicate and at least 537 

three biological replications were performed. The overexpression of PuSWEET15 and 538 

PuWRKY31 was performed on NG fruit, and silencing of PuSWEET15 on BNG fruit. 539 

 540 

ChIP-PCR 541 

The recombinant Pro35S:PuWRKY31-MYC construct was transformed into NG pear 542 

fruit as described above and ChIP assays were performed using the EpiQuikTM Plant 543 

ChIP Kit (Cat. no. P-2014, Epigentek, https://www.epigentek.com/) according to the 544 

manufacturer’s instructions. An anti-MYC antibody (Transgen Biotech) was used to 545 

verify the binding of PuWRKY31 to the PuSWEET15 promoter in vivo as previously 546 

described (Li et al., 2017b). The amount of immunoprecipitated chromatin was 547 

determined by qPCR as previously described (Li et al., 2017b) with 0.5 μl of immuno-548 

precipitated chromatin as template. Each ChIP assay was repeated three times and the 549 

enriched DNA fragments in each ChIP sample were used as one biological replicate for 550 

qPCR. Three regions of the PuSWEET15 promoter were analyzed to assess enrichment. 551 

Primers used are listed in Supplemental Dataset S2. 552 

 553 

Analysis of Histone Acetylation Levels  554 

NG and BNG fruits harvested at commercial harvest day in 2014 were used for 555 
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analyzing the histone acetylation levels. The chromatin was prepared as above and 556 

immunoprecipitated with specific antibodies including anti-acetyl-histone H3 and H4 557 

(Millipore, Billerica, MA). ChIP-PCR analysis to measure the histone acetylation level 558 

of the PuWRKY31 or PuSWEET15 promoter was performed as described by Li et al. 559 

(2017b). PuActin was used as an internal control to normalize the ChIP enrichment 560 

signal. Three regions of the PuWRKY31 or PuSWEET15 promoter were analyzed to 561 

assess enrichment. Primers used are listed in Supplemental Dataset S2. 562 

 563 

Accession Numbers 564 

Sequence data from this article can be found in GenBank libraries under accession 565 

numbers PuSWEET15 (MK940530), PuWRKY31 (MK940531), PuHLS1 (MN201566) 566 

and PuActin (AF386514). 567 

 568 
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Figure Legends 605 

 606 

Figure 1. Phenotype and sugar content of NG and BNG fruits during development.  607 

A. Flowers and fruits of NG and BNG. Pictures were taken at different days after full 608 

bloom (DAFB) in 2014. Scale bars, 1 cm. 609 

B-E. Sugar content of NG and BNG fruits during development. High performance 610 

liquid chromatography (HPLC) was used to measure the content of sucrose (B), glucose 611 

(C), fructose (D) and sorbitol (E) in fruit collected at the indicated day after full bloom 612 

(DAFB) in 2014. Commercial harvest day was 134 DAFB (September 4, 2014). 613 

Numbers under the x axes indicate the DAFB. Three biological replicates were 614 

analyzed, and the error bars represent SE. Asterisks indicate significant difference as 615 

determined by a Student’s t-test (**P < 0.01).  616 

 617 

Figure 2. Expression of PuSWEET15 in NG and BNG fruits and its subcellular 618 

localization. 619 

A. Relative expression of PuSWEET15 during NG and BNG fruits development as 620 

determined by reverse transcription quantitative PCR (RT-qPCR). Fruit samples were 621 

collected in 2014. Numbers under the x axes indicate days after full bloom (DAFB). 622 

Three biological replicates were analyzed, and the error bars represent SE. Asterisks 623 

indicate significant difference as determined by a Student’s t-test (**P < 0.01). 624 

B. Subcellular localization of PuSWEET15. 35S:GFP-PuSWEET15 was transiently 625 

expressed in protoplasts of maize leaves. Transient expression of GFP alone (35S:GFP) 626 

was used as a control. FM4-64 was used as a plasma membrane marker. Scale bars, 5 627 

μm. 628 

 629 

Figure 3. Functional analysis of PuSWEET15.  630 

A. Heterologous expression of PuSWEET15 in yeast strain SUSY7/ura. Yeast cells with 631 

pDR196-PuSWEET15 or pDR196 vector (as a negative control) were grown on SD 632 

(synthetic deficient)/-uracil solid medium containing 2% (w/v) glucose or sucrose as 633 

sole carbon source. The numbers under the panel indicate the dilution fold. 634 
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B and C. PuSWEET15 was overexpressed in NG pear fruit using Agrobacterium 635 

tumefaciens-mediated infiltration. The expression of PuSWEET15 was detected by 636 

reverse transcription quantitative PCR (RT-qPCR) (B) and the sugar content was 637 

measured by high performance liquid chromatography (HPLC) (C). PuSWEET15-OE, 638 

PuSWEET15 overexpressing fruit; Empty vector, control fruit overexpressing empty 639 

pRI101 vector.  640 

D and E. PuSWEET15 was silenced in BNG pear fruit using A. tumefaciens-mediated 641 

infiltration. The expression of PuSWEET15 was detected by RT-qPCR (D) and the sugar 642 

content was measured by HPLC (E). PuSWEET15-AN, PuSWEET15 silenced fruit; 643 

Empty vector, control fruit expressing empty pRI101 vector. 644 

F. PuSWEET15 was overexpressed in N. benthamiana leaves using A. tumefaciens-645 

mediated infiltration. The expression of PuSWEET15 (left) was detected by RT-qPCR, 646 

and the sugar content (right) was measured by HPLC. PuSWEET15-OE, PuSWEET15 647 

overexpressing leaves; Empty vector, pRI101 overexpressing leaves. Three biological 648 

replicates were analyzed, and the error bars represent SE. Asterisks indicate significant 649 

difference as determined by a Student’s t-test (**P < 0.01). 650 

 651 

Figure 4. Functional analysis of PuWRKY31. 652 

A. Expression of PuWRKY31 during NG and BNG fruit development. Fruit samples 653 

were the same as in Figure 1. Numbers under the x axis indicate days after full bloom 654 

(DAFB). 655 

B and C. PuWRKY31 was overexpressed in NG pear fruit using Agrobacterium 656 

tumefaciens-mediated infiltration. The relative expression of PuWRKY31 and 657 

PuSWEET15 was detected by reverse transcription quantitative PCR (RT-qPCR) (B) 658 

and the sugar contents in PuWRKY31-OE and control fruit were measured by high 659 

performance liquid chromatography (HPLC) (C). PuWRKY31-OE, PuWRKY31 660 

overexpressing pear fruit; Empty vector, pear fruit overexpressing empty pRI101 vector. 661 

Three biological replicates were analyzed, and the error bars represent SE. Asterisks 662 

indicate significant difference as determined by a Student’s t-test (**P < 0.01). 663 

 664 
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Figure 5. PuWRKY31 promotes PuSWEET15 transcription. 665 

A. Electrophoretic mobility shift assay (EMSA) analysis of PuWRKY31 binding to the 666 

PuSWEET15 promoter. The hot probe was a biotin-labeled PuSWEET15 promoter, 667 

while the cold probe was a non-labeled competitive probe (with a 100-fold higher 668 

concentration than the hot probe). His-tagged PuWRKY31 (PuWRKY31-His) was 669 

purified and used for DNA-binding assays. The sequence of the biotin labeled probe is 670 

shown and the W-box motif is highlighted in bold.  671 

B. Chromatin immunoprecipitation-PCR (ChIP-PCR) showing the in vivo binding of 672 

PuWRKY31 to the PuSWEET15 promoter. Cross-linked chromatin samples were 673 

extracted from PuWRKY31-MYC overexpressing NG pear fruit and precipitated with 674 

an anti-MYC antibody. Eluted DNA was used to amplify the sequences neighboring the 675 

W-box by quantitative PCR (qPCR). Six regions (S1–S6) were analyzed. Fruit 676 

overexpressing green fluorescent protein (GFP) were used as negative controls. The 677 

ChIP assay was repeated three times and the enriched DNA fragments in each ChIP 678 

were used as one biological replicate for qPCR. 679 

C. Schematic representation of the β-Glucuronidase (GUS) reporter vector containing 680 

the PuSWEET15 promoter and the effector vector containing PuWRKY31. The effector 681 

reporter vectors were infiltrated into Nicotiana benthamiana leaves to analyze the 682 

regulation of GUS activity. Three independent infiltrations were performed, and the 683 

error bars represent SE. Asterisks indicate significant difference as determined by a 684 

Student’s t-test (**P < 0.01). 685 

 686 

Figure 6. Differences of H3ac and H4ac in PuWRKY31 chromatin and PuHLS1 687 

expression between NG and BNG fruits. 688 

A. Differences of H3ac and H4ac in PuActin chromatin. The results were normalized 689 

to the amount of input DNA.  690 

B. Differences of H3ac and H4ac at different regions of the PuWRKY31 chromatin by 691 

ChIP-PCR. Fruit harvested at commercial harvest day in 2014 were used. The results 692 

were normalized relative to the amount of PuActin. Each experiment was repeated three 693 

times. The ChIP assay was repeated three times and the enriched DNA fragments in 694 
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each ChIP were used as one biological replicate for qPCR, and the error bars represent 695 

SE. Asterisks indicate significant difference as determined by a Student’s t-test (**P < 696 

0.01).  697 

C. Expression of PuHLS1 during NG and BNG fruits development by reverse 698 

transcription quantitative PCR (RT-qPCR). Fruit samples were the same as in Figure 1. 699 

Numbers under the x axis indicate days after full bloom (DAFB). Three biological 700 

replicates were analyzed, and the error bars represent SE. Asterisks indicate significant 701 

difference as determined by a Student’s t-test (**P < 0.01). 702 

D. Electrophoretic mobility shift assay (EMSA) analysis of PuHLS1 binding to the 703 

CDS of PuWRKY31. The hot probe was biotin-labeled PuWRKY31 CDS, while the cold 704 

probe was a non-labeled competitive probe (with a 100-fold higher concentration than 705 

the hot probe). GST-tagged PuHLS1 (PuHLS1-GST) was purified and used for DNA-706 

binding assays. The sequence of the biotin labeled probe is shown. 707 

 708 

Figure 7. Model showing the molecular mechanism of differential sucrose 709 

accumulation in NG and BNG fruits. 710 

In the fruit of BNG, a highly sucrose-accumulated bud sport of NG, the high acetylation 711 

level of the PuWRKY31 promoter is associated with its high expression, and 712 

PuWRKY31 binds to the promoter of PuSWEET15, an active sucrose transporter, to 713 

induce its expression, resulting in high levels of sucrose.  714 

  715 
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